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J. Phys.: Condens. Matter 2 (1990) 6953-6963. Printed in the UK 

Periodic structures in a one-dimensional non-linear 
lattice 

P Tchofo Dinda and E Coquet 
Laboratoire OSC, FacultC des Sciences, 6 boulevard Gabriel, 21000 Dijon, France 

Received 5 December 1989, in final form 2 April 1990 

Abstract. We study a one-dimensional non-linear lattice with two sites per unit cell, placed 
respectively in a double-quadratic and a parabolic substrate potential. The phonon stability 
and phase diagram of this structure which can represent a possible model of some hydrogen- 
bonded diatomic chains are determined and some special features of the model are found. 

1. Introduction and presentation of the model 

Hydrogen-bonded chains have been intensively investigated with various models (Axel 
and Aubry 1981, Kashimori et a1 1982, Antonchenko et a1 1983, Zolotariuk et a1 1984, 
Laedke et a1 1985, Alexander and Krumhansl 1986, Peyrard et a1 1987, Pnevmatikos 
1988, Hochstrasser et a1 1988). The basic hydrogen-bonded chain is a sequence of 
alternating heavy ions (OH- ions in ice for instance) and protons. Two different prob- 
lems are generally considered: first, the static structure of the model, i.e. its phase 
diagram; second, the dynamics of the protons. All the models assume a double-well 
substrate potential for the protons involved with the hydrogen bond but the heavy ions 
which are an integral part of the structure are treated differently. In the phase diagram, 
they are generally ignored as for instance in the approach of Axel and Aubry (1981). On 
the contrary the importance of the motion of the heavy ions is now well recognised 
(Laedke eta1 1985, Peyrard et a1 1987) for the dynamics of hydrogen-bonded chains since 
the pioneering work of Antonchenko et a1 (1983). 

In this paper we investigate the role of the displacements of the heavy ions on the 
static structure and phase diagram. For this purpose, we consider a diatomic chain where 
the heavy ions move in a parabolic substrate potential representing the effect of the 
neighbouring lattice and where the light protons move in a double-well substrate poten- 
tial with a double-quadratic form as assumed by Axel and Aubry (1981). First- and 
second-neighbour interactions are included in the model. 

In the present work we investigate the stability and phase diagram of the model with 
a method similar to the method used by Coquet et a1 (1988) who investigated a two- 
dimensional hexagonal non-linear lattice with two sites per unit cell and an on-site 
double-quadratic potential. The calculations treat intrinsically the discreteness of the 
lattice and no continuum limit approximation is required. 
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Figure 1. The non-linear lattice model defining the indices and the interaction constants. 

2. Description of the model 

The model is schematically shown in figure 1 where the cells are labelled by the index IZ. 
The heavy ions labelled A are submitted to the parabolic potential 

where U ,  denotes the displacement of the nth A atom. The light protons labelled B are 
submitted to the double-quadratic potential 

where U ,  denotes the displacement of the nth B atom, ,U' measures the potential barrier, 
a(n) = sgn(u,) indicates which side of the double well is occupied and + E  locates the 
two possible equilibrium positions of a B atom when the interactions between sites do 
not exist. 

The coupling to nearest and next-nearest neighbours is described by harmonic 
interaction constants as indicated in figure 1. k l  is the coupling between two adjacent A 
and B atoms, k2 is the coupling between two sites of type A and k ,  is the coupling 
between two sites of type B. Interactions with a longer range have not been introduced 
in the model for simplicity. 

Therefore the energy for each site in the unit cell is 

+ ( U ,  - u,-1)21* ( I b )  

We have used here a symmetrised form of the energy per site in which half the coupling 
energy of an atom with its two neighbours is introduced-hence the factor b. 
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In order to reduce the number of model parameters, we have introduced reduced 
variables: 

U ,  = U, /& v, = U,/& Ki = k i / a 2  (i = 1 , 2 , 3 )  

M 2  = p2/(u2 FA,,  = f A , n / a 2 E 2  F B , n  = f B , n / @ 2 E 2 *  

In these variables, the energies per site become 

FA,n = hUi + f K , [ ( U ,  - V n ) 2  + ( U ,  - V n - 1 > 2 ]  + aK2[(Un - un+I)’ 

+ ( U ,  - P a )  

+ fK3[(Vn - Vn+1)2 + (Vn - v n - ~ ) ~ I *  (2b) 

F B , ,  = t M 2 [ V ,  - a(n)]’ + f K , [ ( U ,  - V,)’ + ( V ,  - U,,,)’] 

The energy per cell is then 

in units of cy2&*, and the total energy of the chain is 

F = ~ F , ,  
n 

(4) 

The static structure of the model is obtained by energy minimisation, which gives the 
following equations for each site: 

K2Un+1 - (1 + 2K1 + 2K2)Un + K2Un-1 + K I V ,  + K,V, - ,  = 0 (5a) 

KIUn+l + K I U ,  + K3Vn+1 - ( M 2  + 2K1 + 2 K 3 ) V ,  + K3Vn-, = -M’u(n). (5b) 

3. Phonon stability and the phase diagram 

For a non-linear lattice, the phonon stability generally depends upon the particular 
phase that is considered. This is not the case for our model owing to the piecewise 
harmonic double-well potential. Thus we now give a general investigation of phonon 
stability for our model. 

3.1. Phonon stability analysis 

We now consider the dynamics of the model and look for solutions of the equations of 
motion of the chain in terms of small displacements near the equilibrium position: 

U ,  = U! -I- X,( t )  

v, = v: + Y,(t) 

where U! and V,O represent the equilibrium positions in a given phase, and Xn(t)  and 
Y,(t) are small amplitude oscillations at frequency w: 

Xn( t )  = Xexp[i(ot - n e ) ]  

Y,(t) = Y exp[i(ot - n e ) ]  
(6a) 

(6b) 
in which Q is the component of a wavevector Q = QZ* in the first Brillouin zone. 
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The equations of motion of the two sites in cell n lead to the following equation for 
the frequencies: 

w4 - ( C l / m A  + c2/mg)w2 + (l /mAmB)(ClC2 - E 2 )  = 0 ( 7 )  
in which 

C1 = 1 + 2K1 + 2K2[1 - COS(Q)] 

E = 2K1 cos(Q/2) 

and mA and mB represent the masses of A and B atoms, respectively. 
As expected, equation (7)  does not depend upon a ( n )  because the phonon stability 

does not depend upon a particular phase as mentioned above. The lattice is linearly 
stable if the squares of frequencies which are roots of (7)  are positive for all Q in the first 
Brillouin zone: 

C2 = M 2  + 2K1 + 2K3[1 - COS(Q)] 
(8) 

w:  > o  w: > 0. (9) 
We take advantage of the quadratic form of (7)  to express the conditions (9) in terms 

of the product P of roots, the sum S of roots and the discriminant D :  

D 2 0  P = w:w;  > 0 S =  w:  + w ;  >o .  (10) 
The first of these three conditions written as 

D = ( C ,  - Y C ~ ) ~  + 4rE2 5 0 

where r = mA/mB is always true. In terms of the model parameters, the last two 
expressions give 

( 1  + 2Kl + 2 K J 1  - COS(Q)]}{M~ + 2K1 + 2K3[1 - COS(Q)]} - 4K: c0s2(Q/2) > 0 

(12a) 

(12b) 1 + 2K1 + 2K2[1  - cos(Q)] + r { M 2  + 2K1 + 2K3[1 - cos(Q)]} > 0. 

We can determine analytically the limits of stability in the parameter space from 

Q = 0 gives us the condition 
conditions (12a) and (12b) at a few particular points in the Brillouin zone. 

K1 > -M2/2(1  + M 2 ) .  (13) 
For Q = n, two other conditions are easily obtained by (9): 

K1 > -4 - 2K2 

K1 > - M 2 / 2  - 2K3. 

We note that these three conditions do not depend on Y. In addition, for a given K,, 
they are reduced to (13) and (14b) when K 2  > K2c = -1/4(1 + M 2 )  or (14a) and (14b) 
when K 2  < K2c. Conditions (13) and (14a) are equivalent when K 2  = K2c. We also note 
that a special feature of K2c is that it varies from -a to 0 as M2increases from 0 to infinity. 

A numerical analysis scanning the whole Brillouin zone enables us to extend these 
analytical conditions and ultimately to divide the parameter space into regions of phonon 
stability and phonon instability. We have determined the phonon stability in the (Kl, 
K3)  plane for a given KZ.  We have found that, when K 2  > K2c, the phonon stability does 
not depend upon the particular value of K ,  that is considered and the borders of the 
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Figure 2. Plot of different plane sections ( K , ,  K,) of the ( K , ,  K,, K3)  phase space cor- 
responding to K,-values of (a )  1, ( b )  -Q, (c) -$ and (d )  -1. M Z  = ; throughout. The bold 
lines show the borders between different phases. The stability line is indicated by the shaded 
border. The inset in ( b )  is an enlargement of the small box shown in the figure. 

stability regions are entirely determined by the two straight lines resulting from the 
analytical conditions (13) and (14b). In figure 2(a)  the stability line is indicated by the 
shaded border. For K 2  = K,,, the stability line results in a similar fashion from the two 
previous straight lines but the sharp intersection is replaced by a smooth curve which is 
only slightly visible in figure 2(b). When K 2  < K2c, the phonon stability depends on K 2  
and the stability line here is a straight line connected to a smooth curve as shown in 
figures 2(c) and 2(d). We have also found that phonon stability does not depend on the 
ratio r of the A and B masses. 

3.2. The phase diagram 
A given phase is characterised by both its period P I  and its {a(n)} configuration. There 
are 2p1 configurations corresponding to a given P I  period. However, symmetry con- 
siderations reduce the number of phases to investigate. We have concentrated our 
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Table 1. { a ( n ) }  configurations for phases which have been investigated. 

Period Structure Configuration 

1 I (ferro) 
2 111 (antiferro) 
3 211 
4 IV 

212 
5 VI 

312 
VI11 

6 IX 
X 
XI 

XI11 
313 

+ 
+ -  

+ + -  
+ + + -  
+ + - -  

+ + + + -  
+ + + - -  
+ - + - +  

+ + + + + -  
+ + + + - -  
+ + + - + -  
+ + + - - -  
+ + - + - -  

attention on the lower-period phases. However, the description of domain walls in the 
different phases can be used to complete the phase diagrams. We have systematically 
investigated all the periodic phases up to period 6. They are listed in table 1. The 1- 
and l/l-phases which have the same configuration as a ferroelectric domain and an 
antiferroelectric domain will be called respectively ferro and antiferro states. The phases 
corresponding to V,  with n particles on one side of the double-well potential and n’ on the 
other side are denoted nln’ (for instance the phase with configuration { + + + + - - -}is 
denoted 413). This notation gives an immediate description on the configuration of a 
given phase. 

We now present the static solutions of the atomic positions U,  and V,  for the 
structures which are considered. To obtain U,, and V,, equations (5a) and (5b) are first 
decoupled as done by Coquet etal( 1988). We obtain a set of higher-order finite difference 
equations: 

Uni2 + 2AUni1 + BU,, + 2AU,,-, + = f (n )  

Vn+2 + 2AV,+1 + BV, + 2AV,-1 + V,.-2 =g(n )  

A = Y1 + Y 2  - i P l P 2  

f (n>  = 262P1[a(n> + a(n - 111 
g(n)  = -2d2[2y,a(n) + a(n - 1) + a(n + 1)] 

(15a) 

(15b) 

(16) 

(17) 

with 

B = 2(1 + 2 Y l Y 2  - P l P 2 )  

where 

P1 = KlIK2 P 2  = KlIK3 6, = 1/2K2 d 2  = M 2 / 2 K 3  
(18) 

y1 = -1 - 61 - y2 = -1 - 62 - p2. 

Equation (1%) is formally equivalent to that of Axel and Aubry (1981). There is, 
however, a major difference because the right-hand side contains not only the local 
configuration a(n) at site n but also configurations at the neighbouring sites n * 1. These 
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extra terms reflect the coupling mediated by the heavy ions that are not present in the 
model used by Axel and Aubry and as discussed later it modifies the phase diagram. 

Equation (15) is formally equivalent to that treated previously by Peyrard and 
Buttner (1987) for domain walls in a similar one-dimensional lattice model. It has also 
been obtained by Coquet et a1 (1988) for the quasi-one-dimensional structures of a 
diatomic hexagonal lattice model. For a given configuration {a(n)}, this inhomogeneous 
difference equation can be solved exactly (Bender and Orszag 1978, Axel and Aubry 
1981, Reichert and Schilling 1985, Peyrard and Buttner 1987, Coquet et a1 1988). The 
general solution can be expressed in terms of the roots of the characteristic equation of 
the homogeneous finite-difference equation derived from (15). These roots come in 
pairs, the product of each pair being unity ( v ,  1/v, f;, l/f;), and in which v and f; designate 
the two roots with a modulus smaller than unity. The roots depend on the model 
parameters and can be real or complex. In terms of the roots, the solution is 

with 

s = l / ( v  + 1 / Y  - f; - l/f;). (20) 

This configuration has, of course, to be checked for self-consistency at each site. The 
self-consistency condition is written as 

a, = sgn(V,). (21) 

We shall discuss these conditions for our special solutions. 
Equations (19) consist of terms containing the sums of the geometric series 

+= += 

For a given configuration we first calculate analytically the sums, and then we 
determine the atomic positions U,, and V,. As an illustration we perform these cal- 
culations for the ferro and the antiferro states: 

For the ferro state a(n) = 1 (or - 1) for all n,  

U, = Xla(n )  V, = Y,a(n) (23) 

where 

XI = 2 M * K 1 / [ M 2  + 2K1(1+ M 2 ) ]  Y1 = M2(2K1 + 1)/[M2 + 2K,(1 + M * ) ] .  
(24) 

We see that Y 1  is always positive when the condition (13) is fulfilled. Therefore in 
the whole phonon stability region the self-consistency relation (21) is satisfied by solution 



6960 P Tchofo Dinda and E Coquet 

(23). Using equation (3), we then calculate the average energy per cell for the ferro 
state: 

E = M 2 K 1 / [ M 2  + 2Kl(l  + M2)]. 

For the antiferro state a(n) = (- l)", 

U ,  = 0 

Y* = M 2 / ( M 2  + 2K, + 4K3). 

v,, = Y2+) 
where 

We see that Y2 is always positive when the condition (14b) is fulfilled. Therefore in 
the whole phonon stability region the self-consistency relation (21) is satisfied by solution 
(25). Using equation (3), we then calculate the energy per cell for the antiferro state: 

E = M 2 ( K l  + 2K3)/(M2 + 2Kl + 4K3). 

Although U", V ,  and the energy of the static solutions can be evaluated analytically 
from equations (19) and (3) as we have done above for the ferro and antiferro states, 
the calculations are tedious. Therefore we have solved our equations numerically and 
determined the phase diagram by the following three-step process. 

(i) For each set of parameters K1, K 2 ,  K3,  M* and for a given phase with period P1, 
equations (15a), (1%) and (17) are rewritten with the appropriate periodicity conditions: 

un = U n + P l  Vn = V n + ~ l  a(n) = a(n + P,)  (27) 

T(P1)U = F (28a) 

T(P1)V = G (28b) 

which give two systems of equations which can be written in terms of matrices: 

where U ,  V, F ,  G and T(P,) are given in table 2. We note that T(P,) is the same for all 
the phases with the periodicity P,. Atomic positions U,  and V ,  are finally obtained by 
solving (28a) and (28b). In order to avoid some difficulties in the numerical analysis the 
ferro and antiferro states are treated as phases with higher periods of three { + + +} and 
four {+ - + -}, respectively. 

(ii) The average energy E per cell is calculated: 
P .  

(iii) The phase which has the lowest energy and fulfils the self-consistency condition 

Up to period 2, these three steps can be performed analytically and the results 

is determined. 

obtained previously for the ferro and antiferro states are preserved. 



- 

U =  

2A 

1 

0 

0 

1 

2A 

B 
- 

T(3) = 

for PI 
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Table 2. Matrices defining the phases which have been investigated. 
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B 2 A + 1  2 A + 1  

2 A + 1  B 2A + T(4)= 

2 A + 1  2 A + 1  B 

B 2A 1 0 . , . . , .  

2A B 2A 1 0 , . . . .  
1 2A B 2A 1 0 . . . .  
0 1 2 A B  2 A 1 O  . . .  

0 1 2A 

1 0 0  . . .  . 0 1 

2A 1 0 . . .  . . 0 

B 

2A 

2 

2A 

0 

B 

2A 

1 

2A 

B 

2A 

2 

1 

0 

2A 

B 

2A 

25 

Table 3. Phases appearing in the phase diagrams with their corresponding symmetries. 

Centrosymmetric configurations Configurations with an inversion centre 

+ I (ferro) 
+ - + 211 

- + + + - 3 1 2  
+ - + - + VI11 

+ - 111 (antiferro) 
+ + - -  212 + + + - - -  313 

In our calculations we restrict ourselves to lower M 2  values which favour the mobility 
of protons. First we present the results obtained for the particular value M 2  = 4, and 
then we examine the effects of changing M 2 .  

For a given M 2 ,  the phase space is a three-parameter space K , ,  K 2 ,  K3.  In order to 
display conveniently the results we shall present sections of this space corresponding to 
a fixed K2,  plotted in the ( K l ,  K 3 )  plane. As noticed previously for the phonon stability 
analysis, the value of K2 = K2,(K2, = -4 for M 2  = i) plays a particular role. Therefore 
we discuss separately the cases K 2  > K2,, K 2  = K,, and K 2  < K2,. 

As a general result we have found that only phases whose configurations have 
some symmetry appear in the phase diagram as ground states. Some of them are 
centrosymmetric; others have an inversion centre. They are shown in table 3. Fur- 
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thermore the self-consistency condition (21) is always satisfied in the whole parameter 
space where a given phase is the ground state. 

When K 2  > K,,, the phase diagrams for different K 2  do not depend upon the par- 
ticular value of K 2  that is considered and therefore the different sections are identical 
and only the ferro and antiferro states appear (see figure 2(a)). 

When K 2  becomes equal to KZc, three higher-period phases lie in the transition region 
between the ferro and antiferro states. Those phases are the 2/1-, 2/2- and 3/3-phases. 
They are shown in figure 2(b). We note that the 3/3-phase appears next to the ferro state 
whereas the 2/1-phase appears between the 1/1- and the 2/2-phase. 

For K 2  < K2c, the phase diagrams change with K2 unlike the case K z  > KZc and the 
antiferro state does not appear. Figures 2(c) and 2(d) show that the 2/1-, 2/2- and 3/3- 
stability regions become larger. Another higher-period phase appears near the inter- 
section of the borderlines of stability in figure 2(c). This is the VIII-phase, but it 
disappears when K 2  becomes sufficiently low, and only phases of type n/n and n(n - 1) 
are stable in the presence of the ferro state as shown in figure 2(d). In addition, the 
transition line between an n/n-phase and an (n  - l)/(n - 1)-phase splits into two lines 
that enclose an n(n - 1)-phase (figure 2(d)). 

From the various sections, it is easy to build up the three-dimensional phase diagram. 
It is interesting to note that the transition region to the ferro state occurs gradually 
from the antiferro state over the 2/2-phase, the 3/3-phase up to some n/n-phase with 
decreasing K 2 .  A similar result was already obtained by Buttner and Heym (1987) for 
the quasi-one-dimensional structures of a triangular lattice. We also notice that, as K 2  
decreases, the phases near the borderlines of stability disappear gradually and the 
transition line between an n/n-phase and an (n  - l) /(n - 1)-phase splits into two lines 
that enclose an n/(n - 1)-phase. 

In order to examine the effects of the height of the double-well potential barrier, we 
have performed a similar study for different values of M 2 .  The main results of this paper 
for M 2  = 4 are preserved: whenever K 2  > K2,, only ferro and antiferro states lie in a 
unique phase diagram such as in figure 2(a). For K 2  S KZc, the phase diagram depends 
upon the particular value of K 2  that is considered. In addition, we find that the regions 
corresponding to the antiferro state become larger with increasing M 2 .  We also notice 
that, as M Z  varies, K2, ranges from -a to 0 and so the whole positive K2-axis corresponds 
to strong stability of the ferro and antiferro states. 

Comparing our phase diagram with that of Axel and Aubry (1981) where the heavy 
ions are not taken into account, we find some interesting results; the phase diagram of 
our model differs qualitatively according to the value of the coupling between the heavy 
ions K 2 .  For a sufficiently strong repulsive interaction ( K 2  S K2c), the d/d’-type ground 
states appear in our phase diagram (see figure 2(d)). Those phases are also found by 
Axel and Aubry (1981) and, as in their phase diagram, with the ferro state they occupy 
the larger regions in our phase diagram. On the contrary, for weak repulsion or attractive 
interaction between the heavy ions ( K 2  > KZc),  only ferro and antiferro states appear in 
our phase diagram which becomes therefore extremely simple (see figure 2(a)). This 
difference shows the crucial role of the heavy ions of the chain. 

4. Conclusions 

We have investigated in the present paper a possible model of hydrogen-bonded diatomic 
chains. The results given in figure 2 show the significant role of the K,-coupling intro- 
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duced between the A atoms. For instance, as long as K2 > K2c = - 1/4( 1 + M 2 ) ,  we note 
an exceptional stability of the ferro and antiferro states. The independence of the phase 
diagram with respect to K2 in the domain K2 > Kzc is a special feature of the model. On 
the contrary, phase diagrams plotted in the (Kl, K 3 )  plane for K2 < K2c depend on the 
particular value of K 2  that is considered. As K2 decreases, higher-period phases always 
appear of type n/n next to the ferro state. Their stability regions become larger and the 
transition line between an n/n-phase and an (n - l)/(n - 1)-phase splits into two lines 
that enclose an n/(n - 1)-phase. Some phases appear near the borderline of stability, 
but they ultimately disappear when K2 becomes sufficiently low that only phases of type 
n/n and n/(n - 1) are stable in the presence of the ferro state. 

We find results similar to those of Buttner and Heym (1987) about the transition 
regions between the ferro state and the n/n-phase. We also note that symmetries in 
the configurations associated with phases which are stable exist. Some of them are 
centrosymmetric. Others have an inversion centre. 

We also find results similar to those of Axel and Aubry (1981) in the parameter 
regions K2 S K2c, unlike the case K2 > K2c which favours only the ferro and antiferro 
states. This dependence of the phase diagram plotted in the (Kl, K3)-plane on K2- 
coupling between the heavy ions, demonstrates the role of these ions in the static 
structure of the model, which is also now well recognised in dynamical studies. 

Nevertheless, the model that we have investigated oversimplifies the structure of the 
real material; a useful extension would be to substitute a more general and realistic q4- 
type potential for the double-quadratic potential. Moreover, the great displacements of 
the heavy ions could deform the double-well potential associated with protons as 
assumed in dynamical models (Zolotariuk et a1 1984, Laedke et a1 1985, Peyrard et a1 
1987, Hochstrasser et a1 1988). It would also be interesting to introduce a deformable 
q4-type potential as currently done in dynamical studies of this model. 
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